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Shkadov [i] has derived a model system of equations describing the behavior of long- 
wavelength disturbances on a vertically flowing liquid film at moderate flow rates: 

H e r e  q i s  t h e  i n s t a n t a n e o u s  mass  f l o w  r a t e  o f  l i q u i d  i n  t h e  c r o s s  s e c t i o n  x ,  h i s  t h e  i n -  
s t a n t a n e o u s  thickness of the film, g is the free-fall acceleration, o is the coefficient 
of surface tension, ~ is the kinematic viscosity coefficient, and p is the density of the 
liquid. It has been shown [2-4] that this system has two families of solutions in the form 
of steady-state traveling waves h = h0(~), q = q0(~), ~ = x - ct, which are quantitatively 
in good agreement with experiment [5] (c is the phase velocity). Nearly steady-state waves 
are observed experimentally only in a finite initial part of the flow, after which they 
evolve and break up, so that in order to understand this evolution of the flow, it is neces- 
sary to investigate the stability and bifurcations of the solutions obtained for the system 
(1). 

The stability of the first family of waves (which branches off from the plane-parallel 
flow) was first analyzed [6] for Re ~ 30. The stability of slightly nonlinear solutions of 
the equation describing the wave regimes for Re S 1 is discussed in [7]. Others have sys- 
tematically investigated the stability of both families [8, 9] and period-doubling bifurca- 
tion of the first family of waves [i0]. In the present article we carry out a more general 
bifurcation analysis of the waves of this family and investigate new families of steady-state 
waves generated in the course of nonlinear evolution of unstable disturbances. Since the 
method described in [8, 9] can also be used in conjunction with stability analysis for 
the purpose of bifurcation analysis, it is essential to recall fundamental aspects of the 
formulation of the stability problem. 

Transforming the system (I) to dimensionless form at the outset by analogy with [3, 4], 
making the substitutions 

h(~, t) = ho(~) + h'(~, t), q(~, t) = qo(~) + q'(~, t)~ ( 2 )  

in it, and linearizing the result for stability analysis of the solutions h0(~) and q0(~), 
we obtain a system of linear partial differential equations with G-periodic coefficients, 
whose solutions can be represented in the form 

q(~, t) =e-V'\q1(~)] +co" 
(c.c. = complex conjugate). 

The system of ordinary differential equations for hi(~) and q1(~) has solutions that 
are bounded for all 6, which, according to the Floquet theorem, have the form 

= ei~Q~ 

where ~ and ~ are periodic functions having the same period as h0(~) and q0(~), and Q is a 
real parameter. After all the substitutions have been made in order to determine the spec- 
trum of eigenvalues Y and the corresponding eigenfunctions ~, ~, we arrive at the system 

d~ dZ~ da~ _ 
Ar  + B ~ + P~ - -  n ~ --  9~Qho- ~_  - -  3h o ~ _ yr ( 5 )  

~ d ~ d~ ~- c~= v~. 
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Here 

A=Z.4~ ~ +~+~=q 2. -c ;B=ZA --c; 

( 3 +h~ -- t.2i:Q ~ 3ia3Q3ho; e : - ( + + 

q~ 
D = i . 2  ~ - -  9i~2Q~ho; 

h 0 

Z and F are parameters of the flow: Z = (3We/Re')l/2, F = (We/3F~)V~; Re:= <~>/~ is the Reynolds 
number, We=g <h0>/(p <~>~) is the Weber number, Fr = <%>~(g<h0> ~) is the Froude number, and the 
angle brackets signify the average value with respect to the wavelength. 

We have thus reduced the stability analyisis of the steady wave states h0(~) and q0(~) 
to the investigation of the spectrum of eigenvalues 7 for various values of Q for which the 
system (5) has periodic solutions with the same period %. The wave is stable if all Re (Y)9 
0 for any Q. Equation (4) clearly indicates that it is sufficient to limit the discussion 
to the variation of Q in any unit interval, say [-0.5, 0.5]. Taking the complex conjugate of 
Eq. (5), we readily verify that y(Q) = y(-Q). It is therefore sufficient to consider the 
solutions (5) for 0~Q~ 0.5. It follows from Eqs. (2)-(4) that if the real part of some 
eigenvalue vanishes at a certain point (a, Q), a new wave state will branch off from the 
initial state. The generation of unsteady [if Im (~) ~ 0] as well as new steady [if Im (y) = 
0] states is possible in this case. If Q = P/r is a rational number, a ~-periodic state 
with ane w = a/r is formed. If Q is an irrational number, a biperiodic state is generated. 

The variables used here are such that for any values of the parameter Z periodic wave 
states of the first family branch off from the plane-parallel flow for the wave number a = i. 
This family is continued for any Z into the domain of small values of a and goes over to 
negative solitons in the limit a + 0 [2-4, 10]. Below, when speaking of new solutions that 
bifurcate from this family, we shall not recall each time that a solution belonging to the 
generating family itself also exist for these same values of a and Z. 

Thus, in the space of the parameters Z, a, Q the steady states branch off at points 
located on the surfaces 

(~  Z~ Q) = O. (6) 

The cross  s ec t i ons  of the  f i r s t  t h r ee  su r faces  (6) ( the  f i r s t  su r face  has l a r g e r  wave 
numbers) in the plane Z = I0 are represented by curves i, 2, and 6 in Fig. i. Unsteady states 
set in at the points of curves 3-5, 7 where Re (~) = 0 and Im (y) ~ 0. We note that for this 
value of Z waves of the first family are stable under disturbances having the same period 
(Q = 0) in the interval 0.518 ~ I  , and the domain of stability under disturbances with 
Q ~ 0 lies between curves 2 and 3. Clearly, the interval of stability under all disturbances 
is -0.765 5 a ~ 0.82. 

We confine the present discussion to steady-state waves exclusively. For Fig. i, new 
steady traveling-wave states with the largest wave numbers arise when the solutions branch off 
from curve 1 at points with Q = 1/2, 1/3, 1/4. These largest wave numbers are represented 
by curves 1-3, respectively, in Fig. 2 for various values of Z. 
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Figure 3 affords a better picture of the branching process. It shows the amplitudes of 
the first harmonic of the generated wave as a function of ~ with increasing distance from 
the bifurcation point. For Fig. 3a, b ~Z -z = 0.i and Z-: = 1.6) the bifurcation points lie on 
curve i of Fig. 2, and for Fig. 3c (Z -I = 0.6) they lie on curve 2. The bifurcation on 
curve i is one-sided. For all the investigated values of Z (Z -I ~-~ 2) the solution is con~ 
tinued at first in the direction of large ~ and then, attaining the turning line (which is 
not shown in Fig. 2), it moves into the domain of smaller values of ~. At the instant of 
generation, this family is unstable even under disturbances having the same periodicity 
(Q = 0). The nature of the stability under such disturbances changes when curve 4 is reached. 
The solutions corresponding to such instability are represented by the dashed parts of the 

curves in Fig. 3. 

In an investigation of period-doubling bifurcations [i0] the generating solution of the 
first family was chosen analytically in the form of the sum of the first two harmonics. The 
determination of the bifurcation points was reduced to finding the real roots of a quadratic 
equation. It was found in this approach (adapting to our notation) that the bifurcation 
equation does not have any real roots for Z -l > Z~ I ~ i, and branching of the initial solu- 
tion does not take place. The discrepancy with our calculations is clearly attributable to 
the fact that the generating solution is not very accurately represented by two harmonics in 
this domain of the parameters. 

In contrast with curve I, which originates from the line of the first surface (6) 7(~, 
Z, 1/2) = 0, curve 2 has a bifurcation that is two-sided with respect to ~. This situation 
is also typical of the other curves (including curve 3 in Fig. 2) corresponding to rational 
numbers Q = P/r. 

The new solutions obtained in the neighborhood of curves 1-3 are continued by contin- 
uity to the entire investigated domain of variation of the parameters ~ ~ 0.15; 0.5 < Z < 
i00. Calculations indicate the existence of a complicated interrelationship between these 
solutions. They form a multifolded and multisheeted surface on the plane of the parameters 
=, Z -I. For example, if a solution originating on curve 1 is continued by continuity with 
the values of Z fixed, it can be continued for any Z to the smallest values of a used in the 
given calculations. For values of Z that are not common to curves 5 and 6 (Z -I # 0.4-0.68) 
we obtain one solution for each ~. The solution forms a fold between curves 5 and 6 in the 
domain 0.4 E Z -l E 0.68 and, moving downward as ~ is decreased, reaches curve 6, then 
returns along curve 5, and once again enters the domain of small ~. 

If we now fix = in the domain of existence of curve 5 (0.284 S = S 0.373) and begin to 
move along the solution from Z -I < 0.4 in the direction of larger values of Z -l, we find that 
if our line ~ = const intersects curve 6, we stop at the same solution, having passed the 
above-described fold (curve 5-curve 6), but now, increasing ~ and Z -I, we can come back to 
curve i. 

If, on the other hand, we move along ~ = const without intersecting curve 6, curve 5 is 
still the turning line, but now the solution is continued only to curve 2. Consequently, the 
solution generated by curve 1 transforms continuously into one of two bifurcation solutions 
originating from the first family with the parameter Q = 1/3 along curve 2, namely the one 
that branches off in the direction of larger ~ for a fixed value of Z. 

If the solution branching off from curve 2 in the direction of larger ~ for Z -I < 0.68 
is continued by continuity for Z = const, we find that it turns upon reaching curve 6 and can 
be continued to small values of ~. The nature of the turning from the curve is illustrated, 
in particular, by the behavior of the solution in the neighborhood of = = 0.325 in Fig. 3. 
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It is interesting to note that if we move along the solution after turning from curve 6, in- 
creasing ~ and Z -z, but without intersecting this curve a second time, we can return once 
again to curve I. However, if we move from curve 2 for Z -z > 0.68 until we reach curve 5, 
we turn in the direction of smaller ~. Now the situation is largely similar to what happens 
in the branching from curve i. This solution is also continued for any Z and has a fold in 
the domain 0.75 ~ Z -z ~ 1.33 between curves 7 and 8. Curve 7 is similar to curve 5: If we 
approach it from below, then after turning from it we enter a fold and, upon reflection from 
curve 8, continue to move along the same solutionor go over continuously into one of the two 
solutions bifurcating from the first family with Q = 1/4 along curve 3. 

The second solution originating from curve 2 is at once continued monotonically into 
the domain of small ~ for all the investigated values of Z -z. Figure 4a shows the wave pro- 
file of this solution with ~ = 0.2 for Z -z = 0.6. The second solution of curve 3 behaves 
similarly. 

Consequently, for all points of curve 2 the solution branching off in the direction of 
larger ~ merges, although in a complicated way, with the solution branching off from curve i. 
Three solutions exist at once in the domain bounded by curves 5, 6, and 2, which is a unique 
combination of a fold with a cut. 

The domain bounded by curves 7, 8, and 3 also represents a similar fold-cut. We note 
that five solutions exist for ~ and Z in this domain. Three of them are analogous to the 
three preceding the fold and are obtained by continuation downward with respect to ~ from 
curve 5 and by branching from curve 3 upward with respect to ~ with subsequent turning at 
curves 6 and 8; the other two solutions are continued from curves 1 and 2 downward with 
respect to ~. 

Thus, even for the first of the surfaces (6) the branchings along the curves correspond- 
ing to the first maximum rational Q in the interval [0, 0.5] result in the formation of a 
whole set of new steady traveling-wave solutions, which are interrelated in a complicated 
way. This complication increases as ~ is decreased, because, on the one hand, the bifurcation 
lines cluster together more (of. the distances between curves 1 and 2 and between curves 2 
and 3 in Fig. 2), and the fold -cuts become narrower; on the other hand, the number of solu- 
tions increases rapidly. Moreover, other surfaces (6) begin to emerge for smaller values of 
~, and each one has its own complex set of solutions generated from it. 

The wave profiles of the families branching off from the first family from the second 
surface (6) along curve 2 in Fig. 1 for Q = 1/2 and Q = 1/3 are shown in Fig. 4b and 4c, 
respectively, and the profiles corresponding to the third surface and motion along curve 6 in 
Fig. 1 for Q = 1/2 is shown in Fig. 4d (~ = 0.2 and Z = i0 for all of them). This wave num- 
ber is already quite close to zero; the profiles change very slightly with a further decrease 
in ~, and for the most part only the fraction of nearly horizontal segments (h = const) in- 
creases. It is therefore reasonable to expect these solutions to go over to negative soli- 
tons with two or three troughs, respectively, in the limit ~ + 0. 

Although it would be impossible to carry out a comprehensive analysis of all the solu- 
tions, it can be stated with a certain measure of caution that distinct (in the sense of 
stability) solutions are generated on the first bifurcation surface (6). They have quite 
a broad range of wave numbers that are stable under disturbances with Q = 0. For example, 
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lies between curves 4 and 9 in Fig. 2, and in the domains after the folds it lies between 
curves 4 and i0, 5 and Ii, 7 and 12, and below curve 13, respectively. The distinction of 
this set of solutions is also expressed in the fact that some of the solutions have been 
shown, e.g., in [2-4], to be quantitatively in good agreement with the experimental data. 
They are the solutions that go over to single-hump solitons in the limit with respect to 
~, and they also exist in the domain of stability under all possible disturbances [8, 9]. 
Families that originate from other surfaces (6), judging from sample calculations, are un- 
stable under disturbances having the same period for all the investigated values of ~. 

The above-described, rather complex hierarchy of solutions bifurcating from the first 
family is still not complete, because they are accompanied by the existence of surfaces (6) 
on which one of the eigenvalues ~ crosses zero and new solutions emerge. 

Figure 5 shows the profile of a wave of one of the families generated as a result of 
such a secondary bifurcation (~ = 0.2, Z = i0). This solution evidently has a limit in the 
form of a double-hump soliton. Multiple-hump solitons have been obtained [II] for the equa- 
tion describing disturbances on a film in the case Re ~ i. It is clear from the foregoing 
discussion that triple and higher-multiple bifurcations also exist. 

Steady-state traveling waves partition the space of all periodic solutions into domains 
exhibiting different behavior. Our investigation demonstrates the exceedingly complex struc- 
ture of the steady-state solutions of Eq. (i). Without knowing it, therefore, we cannot in- 
vestigate the evolution of periodic disturbances with any kind of completeness, because for 
definite values of ~ and Z small variations in the initial data will eventually induce large 
disparities between the solutions. It is also clear that the presence of a large number of 
unstable steady-state solutions for sufficiently small ~ will, with a high degree of prob- 
ability, impart stochastic behavior to the disturbances for any Z (and, accordingly, for 
any Re). 
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